Northeastern University

Department of Civil and Environmental Engineering

CIVE 7978 Independent Study

Spring 2018

Use of Engineering Software (ProShake, GeoStudio Slope/W and FLAC) in the Field of Geotechnical Earthquake Engineering

> Graduate Students: Alpay Burak Demiryurek Ugurcan Ozdemir

Supervisor: Professor M. K. Yegian

April 2, 2018

Table of Contents

Proje	ct Desci	ription	. 4
1. 5	Site Res	sponse Analysis using ProShake	. 4
1.1	. Inpu	ut Parameters	. 6
1	1.1.1.	Layer Definition	. 6
1	1.1.2.	Motion Inputs	. 9
1.2	. Ana	lysis and Results	12
1	1.2.1.	Response Spectra	12
1	1.2.2.	Depth Plots	13
Ap	pendix	A: ProShake	14
1	A.1. Inp	out Files	14
1	4.2. Res	sponse Spectra	16
1	A.3. De	pth Plots	18
3. Slo	pe Stab	vility Analysis Using GeoStudio Slope/W	21
3.1	. Geo	Studio 2007	21
3.2	. SLC	DPE/W	21
	3.2.1.1.	Setting up the Slope/W Analysis File	21
	3.2.1.2.	Defining the Problem Geometry	24
	3.2.1.3.	Defining Materials and assignment to Regions	25
	3.2.1.4.	Defining Piezometric Line	26
	3.2.1.5.	Defining Slip Surface Enter-Exit Regions	27
	3.2.1.6.	Defining Horizontal Seismic Load Coefficient	28
3	3.2.2 So	lve Analysis	28
	3.2.3 Ar	nalysis Results	28

	Appendix	B: Slope/W	. 30
3.	Seismic A	nalyses Using FLAC 2-D	. 43
	3.1. Mode	ling Procedure	. 45
	3.2. Res	sults and Analysis	. 49
	3.2.1.	Static Analysis	. 49
	3.2.2.	Dynamic Analysis	. 55

Project Description

This independent study report provides documentation an evidence of knowledge gained in performing:

- 1. Site response analysis using ProShake
- 2. Psuedo-static slope stability analysis using GeoStudio Slope/W
- 3. 2-D seismic analysis using FLAC 2D

1. Site Response Analysis using ProShake

The example ProShake run in this independent study uses the cross section of the Knightville Dam which is located on the Westfield River in Huntington, MA. The dam provides flood protection to Huntington, Westfield, and West Springfield region. The Knightville Dam is an earth fill embankment with a height of 160 ft. There are two different embankment slopes which are 3H:1V for 140ft and 2.5H:1V for 20 ft from the surface, respectively.

Figure 1: Knightville Dam

The dam cross section and a soil column representing the crest region of the dam are shown in Figure 2. The soil profile consists of about 110 ft glacial till under the Knightville Embankment Dam. Thirty feet of weathered bedrock underlies the glacial till and hard bedrock is located below weathered bedrock.

SECTION A-A NEAR STA. 4+82

Figure 2: Dam Section and soil column

ProShake was used to obtain response spectra of the ground surface motion at the crest of the Knightville Dam. Depth plots such as peak acceleration, shear stress, and shear strain vs. depth were also investigated.

1.1. Input Parameters

Three ranges of shear wave velocity were used for each soil layer and they were Lower Bound (LB), Best Estimate (BE), and Upper Bound (UP). ProShake analyses were performed for each shear velocity range.

1.1.1. Layer Definition

There are five soil layers defined in the soil column (Figure 3) which are: impervious rolled fill, hydraulic core, glacial till, weathered bedrock and bedrock. In order to get more accurate results of seismic response of the soil column the main layers were divided into nineteen sub-layers, as shown in the Figure 3.

Figure 3: Layered Soil Column

The input motion was applied at the outcropping of bedrock. The water table was inputted as 55 ft. below from the top of soil column. For each sub-layer, material name, soil model, thickness, unit weight and shear wave velocity were inputted and G_{max} was estimated automatically by using unit weight and shear wave velocity. How to input these parameters is shown in the Figure 4.

How many I ProShake 2.0 - Professional Version [CAV File Edit View Tools Windows New Open Impot ProShake 1.x Save Save Project Identifier: IS Prost Project Identifier: IS Prost	ayers are inputted Jsers\ugrcn\Google Drive\NEU Courses\independent st Help ☞ Input Manager ☞ Sol Walidate Report Spreadsheet Data Program (hake dle Dam	Analyst Name:	Ad at bedrock	Water table is analysis; which purposes which ratio depend stresses and	isn't needed for g ereas, it is needed ich is calculation ing on earthquake vertical <u>effective</u>	round motion I for liquefaction of cyclic stress e-induced shear stresses.
Profiles Motions	Insert Duplicate	ic c	Profile 1 of 1	>) 🛅 Delete	Plot (80)	
Number of Layers:	19 🔹	Input Motion Layer Number:	19		Water Table Depth (ft):	55.00
) Material Name:	npervious Rolled Fill	Layer 1 of 19	> > Tim Delete	Plot	Copy	te
Soil Model: E	(PRI	×	Soil Model Parameters	0.00	Motion Time Histories	
Thickness (ft):	5.00 Vs (ft/sec): 740.00	K0:	0.50	☑ Response Spectra	
Unit Weight (pcf): Strength Correction	135.00 Gmax (ks	ŋ: 2297.69	OCR:	1.00	Stress/Strain Time Histo	ries
Apply	etress Rati	o: 0.80	No. of Cycles: Freq (Hz):	1.00	Uutcrop	
G _{max} is calc after inputti	ulated automatically ng shear wave velocity		Cu:	10.00	Apply to All Layers	
and unit we	ight from $v_s = \sqrt{\frac{G}{\rho}}$	EPRI Darendeli (EPRI Gravel (Se Ishibashi &	2001) ed et al.) Zhang (1993)			
		Linear Menq (2003 Rock (Idris Sand (Seec Vucetic - D)) s) & Idriss) obry			

Figure 4: Input for Layer Definition

There are different soil models available at ProShake to select different modulus reduction and damping ratio models to find shear strains.

Soil model: Soil models are selected to use corresponding modulus reduction and damping increase curves. Shear strains are calculated by using G_{max} at first, then using modulus reduction and damping model for corresponding soil model, shear strains are calculated with a number of iterations until it converges. In the analysis, Electric Power Research Institute (EPRI) model (Figure 5) and Idriss (Figure 6) model were used for sands and rocks, respectively.

- Electric Power Research Institute (EPRI) for sands:

Idriss for rock:

Figure 6: Idriss soil model

Knightville Dam Soil Profile: Soil column for lower bound shear wave velocity of Knightville Dam was inputted as below table:

Layer Number	Material Name	Thickness	Unit Weight	Vs	G Max	Soil Model ID	Output Outcrop
1	Impervious Rolled Fill	5.00	135.0	740.0	2297.7	EPRI	True
2	Impervious Rolled Fill	5.00	135.0	740.0	2297.7	EPRI	False
3	Impervious Rolled Fill	5.00	135.0	740.0	2297.7	EPRI	False
4	Impervious Rolled Fill	10.00	135.0	740.0	2297.7	EPRI	False
5	Impervious Rolled Fill	10.00	135.0	740.0	2297.7	EPRI	False
6	Hydraulic Core	10.00	108.0	600.0	1208.4	EPRI	False
7	Hydraulic Core	10.00	108.0	600.0	1208.4	EPRI	False
8	Hydraulic Core	10.00	108.0	600.0	1208.4	EPRI	False
9	Hydraulic Core	10.00	108.0	700.0	1644.8	EPRI	False
10	Hydraulic Core	5.00	108.0	700.0	1644.8	EPRI	False
11	Glacial Till	20.00	135.0	1090.0	4985.2	EPRI	False
12	Glacial Till	20.00	135.0	1090.0	4985.2	EPRI	False
13	Glacial Till	20.00	135.0	1090.0	4985.2	EPRI	False
14	Glacial Till	20.00	135.0	1500.0	9440.9	EPRI	False
15	Glacial Till	15.00	135.0	1500.0	9440.9	EPRI	False
16	Glacial Till	15.00	135.0	1500.0	9440.9	EPRI	False
17	Weathered Bedrock	15.00	140.0	2000.0	17405.4	Rock (Idriss)	False
18	Weathered Bedrock	10.00	140.0	2000.0	17405.4	Rock (Idriss)	False
19	Bedrock	0.00	150.0	4500.0	94408.5	Rock (Idriss)	True

Table 1.1: Soil Layer Properties for LB Shear Wave Velocity

For granular materials column for as impervious rolled fill, hydraulic core and glacial till, EPRI soil model was applied. Weathered bedrock can also be modeled as granular material and so as EPRI method but since its shear wave velocity was about 2000 ft/sec, it was modeled as rock and rock (Idriss) soil model was used for weathered bedrock and bedrock layer. First and last layer were defined as outcrop. Input motion is an outcrop motion, i.e., if it was recorded at, or is intended to represent the motion at, a free surface. If the outcrop is not established for a layer, the input motion will be applied at the input motion location as if the motion was recorded at that depth. Soil column properties for BE, UB shear wave velocities are tabulated at the Appendix A section.

1.1.2. Motion Inputs

Three earthquake motions were inputted into the ProShake. The earthquakes were first converted into motion files for ProShake analysis. Effective strain ratio (ESR) has an empirical relation with an earthquake magnitude which is (M-1)/10 and ESR is a strain reduction factor to calculate effective shear strain with maximum shear strain defined as:

$$\gamma_{eff} = R_{\gamma} x \gamma_{max} \rightarrow R_{\gamma}$$
: strain reduction factor, $\gamma_{eff} = effective$ shear strain

ESR is typically taken as 0.65; however, magnitude of 6.5 earthquake (California region earthquake) is assumed and **ESR was used as 0.55**. Peak acceleration is automatically obtained from the earthquake motions which are inputted. If the peak acceleration is changed, the whole motion is scaled up/down depending on the changed peak acceleration. For the project, peak acceleration was left as it was in the earthquake motions. Also, time step is taken from the motion data.

The software also gets cutoff frequency as an input for computational purposes. Typically, 20-50 Hz and 100 Hz cutoff frequencies are used for West and East cost of the United States, respectively.

Damping ratio was used in the calculation of response spectra was 5%.

Effective strain ratio)	Different motions	can	No. of Profiles		Customary
was inputted		were inputted		No. of Motions	s: 3 🗘 🔿 Me	tric
Profiles Motions						_
	Duplicate	ic c Motion	> 1 of 3 > >	1 Delete	Earthquake motion	
Group Description:	R = (M-1) / 10				was selected	
\backslash						
Effective Strain Ratio:	0.55	Error Tolerance (%):	1.00%		Maximum Iterations:	50
Motion Data			/	Motion P	lots	
Motion File Name:	E:\Google Drive - 10.13.2017\NEU Courses\independent stu	dy\ProShake\MCE-1BC.eq			Acceleration Time History	80
Motion Title:	EDUSHAKE/PROSHAKE 2.0 EARTHQUAKE FILE				Velocity Time History	80
Description:					Displacement Time History	80
					Husid Plot	<u>80</u>
No. of Values:	6000	Peak Acceleration (g):	0.053		Fourier Spectrum	80
No.of Fourier Terms: 8	3192 ~	Time Step (sec):	0.005		Response Spectrum	\$\$
Cutoff Frequency (Hz):	100.0	Nyquist Frequency:	100.0		Motion Parameters	80
E	Apply as Outcrop Motion		Animation			

Figure 7 shows some of the details of the input motion file.

Figure 7: Motion inputs in ProShake

Acceleration Time Histories:

Figure 8 indicates input motions used in Proshake.

- Earthquake motion MCE-1BC:

Figure 8: Acceleration Time History for MCE-1BC, MCE-2BC and MCE-3BC

1.2. Analysis and Results

Soil behavior is nonlinear and inelastic which means that the shear modulus of the soil changes during seismic shakings. Although the soil is known as nonlinear and inelastic, the ProShake cannot use nonlinear stress-strain behavior due to how the software solves the equation of motion.

To approximate nonlinearity, the software uses <u>an equivalent linear approach</u>. Linear analyses are performed iteratively by using modulus reduction and damping ratio to get effective shear strain. This process is repeated until the computed effective strain does not change from the iteration to the next.

1.2.1. Response Spectra

Figure 9: Response Spectrum for all Shear Wave Velocities (LB, BE and UB)

From the response spectrum plot shown in Figure 9, the peak spectral acceleration is about 0.22g and the natural period of the structure range between 0.1 - 0.6 sec gives the peak spectral accelerations.

1.2.2. Depth Plots

Figure 6: Peak Shear Stress, Peak Acceleration and CSR for Shear Wave Velocities (LB, BE and UB)

Appendix A: ProShake

A.1. Input Files

Layer Number Material Name Thickness Unit Weight Vs G Max Soil Model ID Output Outcrop 1 Impervious Rolled Fill 5.00 135.0 740.0 2297.7 EPRI True 2 Impervious Rolled Fill 135.0 2297.7 5.00 740.0 EPRI False 3 Impervious Rolled Fill 5.00 135.0 740.0 2297.7 EPRI False 4 Impervious Rolled Fill 10.00 135.0 740.0 2297.7 EPRI False 5 Impervious Rolled Fill 10.00 135.0 740.0 2297.7 EPRI False 6 Hydraulic Core 10.00 108.0 600.0 1208.4 EPRI False 7 Hydraulic Core 10.00 108.0 600.0 1208.4 EPRI False 8 Hydraulic Core 10.00 108.0 600.0 1208.4 EPRI False 9 Hydraulic Core 10.00 108.0 700.0 1644.8 EPRI False 10 Hydraulic Core 5.00 108.0 700.0 1644.8 EPRI False 11 Glacial Till 20.00 135.0 1090.0 4985.2 EPRI False Glacial Till 4985.2 12 20.00 135.0 1090.0 EPRI False 13 Glacial Till 20.00 135.0 1090.0 4985.2 EPRI False 14 Glacial Till 20.00 135.0 1500.0 9440.9 EPRI False 15 Glacial Till 15.00 135.0 1500.0 9440.9 EPRI False Glacial Till 15.00 16 135.0 1500.0 9440.9 EPRI False 17 Weathered Bedrock 15.00 140.0 2000.0 17405.4 Rock (Idriss) False Weathered Bedrock 10.00 140.0 2000.0 17405.4 Rock (Idriss) False 18

• LB Shear Wave Velocity

• BE Shear Wave Velocity

0.00

Bedrock

19

Layer Number	Material Name	Thickness	Unit Weight	Vs	G Max	Soil Model ID	Output Outcrop
1	Impervious Rolled Fill	5.00	135.0	1050.0	4626.0	EPRI	True
2	Impervious Rolled Fill	5.00	135.0	1050.0	4626.0	EPRI	False
3	Impervious Rolled Fill	5.00	135.0	1050.0	4626.0	EPRI	False
4	Impervious Rolled Fill	10.00	135.0	1050.0	4626.0	EPRI	False
5	Impervious Rolled Fill	10.00	135.0	1060.0	4714.6	EPRI	False
6	Hydraulic Core	10.00	108.0	900.0	2719.0	EPRI	False
7	Hydraulic Core	10.00	108.0	900.0	2719.0	EPRI	False
8	Hydraulic Core	10.00	108.0	900.0	2719.0	EPRI	False

150.0

4500.0

94408.5

Rock (Idriss)

True

9	Hydraulic Core	10.00	108.0	1000.0	3356.7	EPRI	False
10	Hydraulic Core	5.00	108.0	1000.0	3356.7	EPRI	False
11	Glacial Till	20.00	135.0	1450.0	8822.0	EPRI	False
12	Glacial Till	20.00	135.0	1450.0	8822.0	EPRI	False
13	Glacial Till	20.00	135.0	1450.0	8822.0	EPRI	False
14	Glacial Till	20.00	135.0	2000.0	16783.7	EPRI	False
15	Glacial Till	15.00	135.0	2000.0	16783.7	EPRI	False
16	Glacial Till	15.00	135.0	2000.0	16783.7	EPRI	False
17	Weathered Bedrock	15.00	140.0	2500.0	27195.9	Rock (Idriss)	False
18	Weathered Bedrock	10.00	140.0	2500.0	27195.9	Rock (Idriss)	False
19	Bedrock	25.00	150.0	5000.0	116553.7	Rock (Idriss)	True

• UB Shear Wave Velocity

Layer Number	Material Name	Thickness	Unit Weight	Vs	G Max	Soil Model ID	Output Outcrop
1	Impervious Rolled Fill	5.00	135.0	1370.0	7875.4	EPRI	True
2	Impervious Rolled Fill	5.00	135.0	1370.0	7875.4	EPRI	False
3	Impervious Rolled Fill	5.00	135.0	1370.0	7875.4	EPRI	False
4	Impervious Rolled Fill	10.00	135.0	1370.0	7875.4	EPRI	False
5	Impervious Rolled Fill	10.00	135.0	1370.0	7875.4	EPRI	False
6	Hydraulic Core	10.00	108.0	1200.0	4833.7	EPRI	False
7	Hydraulic Core	10.00	108.0	1200.0	4833.7	EPRI	False
8	Hydraulic Core	10.00	108.0	1200.0	4833.7	EPRI	False
9	Hydraulic Core	10.00	108.0	1300.0	5672.9	EPRI	False
10	Hydraulic Core	5.00	108.0	1300.0	5672.9	EPRI	False
11	Glacial Till	20.00	135.0	1810.0	13746.3	EPRI	False
12	Glacial Till	20.00	135.0	1810.0	13746.3	EPRI	False
13	Glacial Till	20.00	135.0	1810.0	13746.3	EPRI	False
14	Glacial Till	20.00	135.0	2500.0	26224.6	EPRI	False
15	Glacial Till	15.00	135.0	2500.0	26224.6	EPRI	False
16	Glacial Till	15.00	135.0	2500.0	26224.6	EPRI	False
17	Weathered Bedrock	15.00	140.0	3000.0	39162.1	Rock (Idriss)	False
18	Weathered Bedrock	10.00	140.0	3000.0	39162.1	Rock (Idriss)	False
19	Bedrock	25.00	150.0	5500.0	141030.0	Rock (Idriss)	True

A.2. Response Spectra

• LB Shear Wave Velocity

• BE Shear Wave Velocity

• UB Shear Wave Velocity

A.3. Depth Plots

• LB Shear Wave Velocity

o BE Shear Wave Velocity

• UB Shear Wave Velocity

3. Slope Stability Analysis Using GeoStudio Slope/W

3.1. GeoStudio 2007

GeoStudio 2007 is a product suite for geotechnical modeling developed by GEOSLOPE. One of the program in GeoStudio is SLOPE/W which perform slope stability analysis. Slope/W was included in this independent study.

3.2. SLOPE/W

In this study SLOPE/W was used for slope stability analysis of Knightville Dam.

3.2.1.1. Setting up the Slope/W Analysis File

- Start creating a new project from "File \rightarrow New" tab of GeoStudio 2007.
- In the KeyIn Analyses dialog box, enter analysis title, author and comments (Fig. 10)

KeyIn Analyses			? <mark>x</mark>
Analyses: Add Delete Independent Study - Knightville Dam Slope S	Summary Title: Author: Comments:	Independent Study - Knightville Dam Slope Stability Analysis Alpay Burak Demiryurek && Ugurcan Ozdemir # Slope Stability Analysis # Possible Slip-Surfaces with Corresponding FoS (Factor of Safety)	•

Figure 10: GeoSlope Analysis Setup

• Click on "Add" dropdown button and select "Slope/W→Limit Equilibrium" (Fig. 11)

🜃 KeyIn Analyses							? X
Analyses:	Ad	d 🔻 Delete		_			
🚮 Independent S		Clone				_	
		SLOPE/W Analysis	•	Lin	nit Equilibrium		
		SEEP/W Analysis	►	SIG	GMA/W Stress		
	<u></u>	SIGMA/W Analysis	•	QL	JAKE/W Stress	Stability Analysis	
		QUAKE/W Analysis	•	QL	JAKE/W Newmark Deformation		
	Ū	TEMP/W Analysis	►	thor:	Alpay Burak Demiryurek && Ugurcan Ozde	emir	
		CTRAN/W Analysis	►	mments:	# Slope Stability Analysis		*
	₽	AIR/W Analysis	•	F	# Possible Slip-Surfaces with Corresponding	ng FoS (Factor of Safety)	
	2	VADOSE/W Analysis	•				

Figure 11: Slope/W Analysis Creation

• Next, enter the name and description for the analysis (Figure 12)

KeyIn Analyses		? <mark>×</mark>
Analyses: Delete Independent Study - Knightville Dam Slope Stability Analys	Name: IS-Knightville Parent: (none)	Description: Slope Stability Analysis of Knightville Dam
IS-Knightville	Analysis Iype: Morgenstern-Price Settings Slip Surface FOS Distribution Advanced	
	Side Function: Half-sine function	in Values
	PWP Conditions from: (none)	•

Figure 12: Model Description

Under the "Analysis Type", SLOPE/W provides 9 predefined methods. Below tables summarize 1) what equations of statics are satisfied for each method (Table 3-1), and 2) summary of the interslice forces included and assumed relationship between the interslice shear and normal forces (Table 3-2).

Method	Moment Equilibrium	Force Equilibrium
Ordinary or Fellenius	Yes	No
Bishop's Simplified	Yes	No
Janbu's Simplified	No	Yes
Spencer	Yes	Yes
Morgenstern-Price	Yes	Yes
Corps of Engineers – 1	No	Yes
Corps of Engineers – 2	No	Yes
Lowe-Karafiath	No	Yes
Janbu Generalized	Yes (by slice)	Yes
Sarma – vertical slices	Yes	Yes

Table 3-1: Equations of Statics Satisfied

Table 3-2: Interslice force characteristics and relationships

Method	Interslice Normal (E)	Interslice Shear (X)	Inclination of X/E Resultant, and X-E Relationship
Ordinary or Fellenius	No	No	No interslice forces
Bishop's Simplified	Yes	No	Horizontal
Janbu's Simplified	Yes	No	Horizontal
Spencer	Yes	Yes	Constant
Morgenstern-Price	Yes	Yes	Variable; user function
Corps of Engineers – 1	Yes	Yes	Inclination of a line from crest to
Corps of Engineers – 2	Yes	Yes	Inclination of ground surface at top of slice
Lowe-Karafiath	Yes	Yes	Average of ground surface and slice base inclination
Janbu Generalized	Yes	Yes	Applied line of thrust and moment equilibrium of slice
Sarma - vertical slices	Yes	Yes	$X = C + E \tan \phi$

- In this particular analysis, "Spencer Method" has chosen as analysis type.
- Under settings tab for pore water pressure conditions, "PWP Conditions from: Piezometric Line" has selected. (Figure 13)

KeyIn Analyses	5 ×
Analyses: <u>Add</u> <u>Delete</u> Independent Study - Knightville Dam Slope Stability Analysis IS-Knightville	Name: IS-Knightville Description: Parent: (none) Slope Stability Analysis of Knightville Dam Analysis Type: Spencer Settings Slip Surface FOS Distribution Advanced PWP Conditions from: Piezometric Line
	Staged Rapid Drawdown analysis (using 2 Piezometric Lines)

Figure 7: Analysis Settings

• Under "Slip Surface" tab following options were checked. (For right direction of slip surface, created file has been copied, direction of slip changed and enter-exit points redefined.) (Figure 14)

KeyIn Analyses Analyses: Add Delete Independent Study - Knightville Dam Slope Stability Analysis SKnightville IS-Knightville	Name: IS-Knightville Parent: (none) Analysis Type: Spencer Analysis Type: Spencer Settings Slip Surface FOS Distribution Advanced Direction of movement
Undo 💌 Redo 💌	 <u>A</u>uto Locate Tension Crack Option <u>No</u> tension crack Tension crack angle: <u>0</u> Tension crack line Search for tension crack <u>Unit weight of water</u>: <u>9.807 kW/m³ </u> <u>Qlose</u>

Figure 8: Slip Surface Settings

• No changes has been made under "FOS Distribution" and "Advanced" tabs.

3.2.1.2. Defining the Problem Geometry

Problem geometry in SLOPE/W defined according to the cross section plan (Figure 15), provided by Department of The Army, of Knightville Dam near station 4+82.

Figure 9: Knightville Dam Cross Section

In model domain GeoStudio allows users to draw regions (consists of points) and points. In this analysis, due to irregular shape of the cross section location of points were determined first by importing the cross section in AutoCAD, and then each point coordinate entered in model using "KeyIn→Points→Add" method. Total of 54 points are used in modeling. (Figure 16)

ID	X (ft)	Y (ft)	Label	-	Add
1	-600	400	Point+Number		
2	-600	440	Point+Number		Delete
3	-600	534	Point+Number		
4	-600	610	Point+Number		
5	-245	550	Point+Number		
6	-241	547	Point+Number	-	
•				•	
				· ·	

Figure 10: Point coordinates for the model

Next, for each material and layer regions are defined using already defined points. Total of 10 regions were defined in the Knightville Dam model. (Figure 17)

Region	Points	<u>A</u> dd
1	2,1,50,51	
2	2,3,5,6,7,8,52,30,20,18,19,21,31,32,33,34,35,36,37,38,39,40,41,42,43,51	Delete
3	5,6,7,8,9,10,45,11,12,15,16,17	
4	8,52,30,20,28,24,45,10,9	
5	28,26,53,18,20	
5	27, 19, 21, 29	
7	26,22,23,27,19,18,53	
8	33,47,46,44,25,29,21,31,32	
9	14,13,44,46,47,33,34,35,36,49,48	
10	12, 11, 45, 24, 28, 26, 22, 23, 27, 29, 25, 44, 13, 14	

Figure 11: Region definitions in model

3.2.1.3. Defining Materials and assignment to Regions

Materials in the model defined using "KeyIn→Materials" function using provided data in Table 3-3.

Table 3-3 – Material Properties

Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
Impervious Rolled Fill	Mohr-Coulomb	135	0	40
Hydraulic Fill	Mohr-Coulomb	108	0	28
Hydraulic Shell	Mohr-Coulomb	133	0	35
Upstream Transition	Mohr-Coulomb	108	0	28
Downstream Transition	Mohr-Coulomb	108	0	28
Dump Rock	Mohr-Coulomb	135	0	36
Bedrock	Bedrock (Impenetrable)			
Glacial Till	Mohr-Coulomb	135	0	40

Then using "Draw Materials" (Figure 18 option of GeoSlope, materials assigned to corresponding regions in the model.

🛃 KnightsVilleDamStatic.gsz* - GeoStud	Draw Materials			
<u>File Edit Set View K</u> eyIn <u>D</u> raw	Indo	w <u>H</u> elp		
D 🛩 🖩 / 🖨 🇁 🐚 🛌	ू र 🗠 र 🔯 🛛 🍳 🤤	्रे 🖳 145% 🔻 🖽 🖄 1	🚔 Y: 1 🚔 🗎 🧰	<u>a</u>
k 🙀 🔓 🖹 📥 🖉 🎦	🟝 🏸 🕺 🤻 🖊 🚽 💆 🧏	۷ 🖌 📕	4 4 4 0 K -	- 🗄 📭 🗚 AI
📓 🛛 🖉 🔣 🕅 🕅 🖓	ysis: 👞 SLOPE/W Analysis	▼ Tjme:	Current Analysis	Only
🎢 🌌 (none) 🔹				

Figure 12: GeoStudio 2007 Draw materials icon

3.2.1.4. Defining Piezometric Line

After defining the materials, piezometric line has been defined using point coordinates under "KeyIn→Pore Water Pressure.. →Add" option. (Figure 19)

-102.6633, 762.00	otaic Lines			8 ×
Piezometric Line	2			<u>A</u> dd ∣▼
1	1			Delete
Points Materi X (ft) 14 155 290 600 ∢	als Properties Y (ft) 550 513 501 501 III		Add Delete	
Undo 💌	<u>R</u> edo ▼			Close

Figure 13: Piezometric line points

Figure 20 shows the Knightville Dam model after assignment of materials and piezometric line.

3.2.1.5. Defining Slip Surface Enter-Exit Regions

Slip surface enter and exit regions defined in "KeyIn \rightarrow Slip Surfaces \rightarrow Entry and Exit" option. Decided exit region starts from toe of the dam and ends where the side slope changes using 150 increments over the range and decided entry region starts from the bottom elevation of impervious fill on the right-side slope and ends at left most point of the crest using 20 increments over the range. (Figure 21)

After defining entry and exit ranges for slip surface, using "Draw Slip Surface Radius" method, a region defined for possible slip surfaces with following properties. (Figure 21)

3.2.1.6. Defining Horizontal Seismic Load Coefficient

The model created for static analysis cloned as "Seismic Case" in "KeyIn Analysis" by right clicking the analysis and selecting clone (Figure 14). After creating new file, horizontal seismic coefficient defined in "KeyIn \rightarrow Seismic Load" option as horizontal coefficient equals to 0.1(Figure 15).

P	KeyIn Analyses	2	×
PE	Analyses: <u>A</u> dd ▼ Delete	Name: SLOPE/W Analysis Description:	
Н	KnightsVille Dam Slope/W Analysis	Parent: (none)	-
	SLOPE Clone	Analysis Type: Spencer	

Figure 14: Cloning of static analysis

KeyIn Seismi	c Load	2	×	
Coefficient				
Horizontal:	0.1			
Vertical:	None			
Ignore seismic load in base shear strength calculations.				
OK Cancel				

Figure 15: KeyIn Seismic Load definition pop-up window

3.2.2 Solve Analysis

Once the problem is completely modeled in the DEFINE windows, it should be then checked for errors: Click tool menu button \rightarrow click verify/optimize button \rightarrow if no errors were found then it means it is ready for analysis. Pressing the Start button begins the computations.

Created Models for static and seismic case analyses separately.

3.2.3 Analysis Results

Once the numerical computation is finished, the CONTOUR button will appear. All the analysis results can be view and extracted in the shading form, graphical form, vector form, or isoline form. This all results can be access through draw menu in the CONTOUR mode.

Analyses results showing factor of safety values and slip surfaces for right to left and right to left slips are shown in Appendix B section for Slope/W.

3. Seismic Analyses Using FLAC 2-D

Chilhowee dam cross section was studied for FLAC 2-D in this independent study. Figure 22 shows the geometry of the Chilhowee dam geometry as well as water table elevation while the dam is in operation. The model was 390 ft width from side to side and maximum height of the dam was 81.5 ft. The dam was built of concrete and founded on a 20 ft of sandstone rock layer. Since there were hollow section for wing section of the dam, lightweight concrete material was inputted by changing density property (0.5xmass).

Material Type	Material Model	Density (pcf/g)	Bulk Modulus (psf)	Shear Modulus (psf)
Sandstone	Elastic	4.1925	8.175 x 10 ⁷	3.773 x 10 ⁷
Rockfill	Elastic	4.3478	1.553 x 10 ⁶	9.317 x 10 ⁵
Concrete	Elastic	3.7267	9.275 x 10 ⁷	6.957 x 10 ⁷
Light Concrete	Elastic	2.17	9.275 x 10 ⁷	6.957 x 10 ⁷

Figure 22: Dam geometry and material definitions

Dynamic analysis was performed by FLAC in a way that horizontal acceleration time history was applied at the bottom boundary. Acceleration history of 0.8xMorganHill record was used in the model. Since the calculation step is 4.097×10^{-5} sec used by the software for this model, and the delta-time is 0.005 sec for the motion input, $0.005 / (4.097 \times 10^{-5}) = 122$ step is skipped for displaying time histories. Figure 23 indicates the acceleration time history of the motion displayed by the FLAC.

Figure 23: Input Motion of Morgan Hill

3.1. Modeling Procedure

Necessary FLAC model options were set as shown in the Figure 24. Imperial unit system was selected as system units and dynamic option was checked for dynamic mode to be activated.

For building grid for the model, 59 elements in x direction (I in IJ system) and 39 elements in y direction (J in IJ system) were decided. Figure 25 shows generated mesh for each material defined in the model.

Model options	×			
Configuration options				
Axisymmetry	C++UDMs			
GWFlow	Creep			
P_Stress	✓ Dynamic			
Adjust tot. stress	Thermal			
	Two-phase flow			
Extra grid variables: 20				
System of physical units Imperial: foot-slug-second V Reset ?				
User Interface Options				
Include structural elen	nents			
Include advanced con	stitutive models			
Include factor-of-safe	ty calculations			
<u>R</u> eopen la	ist project			
<u>P</u> ick p	roject			
OK Car	ncel <u>H</u> elp			

Figure 24: Model options for model

Figure 25: Mesh Generation and Material Definition in the Model

The model was fixed at left and right-hand side in x-direction, and bottom in both direction. Figure 26 indicates how boundary conditions were applied at sides and bottom part of the sandstone.

Figure 26: Boundary conditions

Water pressures and initial pore pressures for rockfill material were applied as normal stresses in the model and figure 27 shows the water pressures applied in the model.

Figure 27: Applied water pressures

Figure 28 shows the model for static analysis.

Figure 28: Model for static analysis

3.2. Results and Analysis

3.2.1. Static Analysis

The model was run for static condition which there was no input motion applied. The figure 29 shows vertical total stresses.

Figure 29: Vertical Total Stresses (Static)

Figure 30: Vertical Effective Stresses

Figure 31: Horizontal Effective Stresses

Figure 32: Shear Stresses

Figure 33: Vertical Displacement (static)

Figure 34: Horizontal Displacement (static)

3.2.2. Dynamic Analysis

Figure 35: Maximum Horizontal Acceleration

Figure 36: Maximum Vertical Acceleration

Figure 37: Maximum Principle Stresses

Figure 38: Minimum Principle Stresses

Figure 39: Maximum Vertical Stresses (static + seismic)

Figure 40: Maximum Shear Stresses (static + seismic)

Figure 43: Horizontal Displacement Record at Top of the Dam

Figure 46: 18 Vertical Velocity Record at Top of the Dam

Figure 47: 19 Vertical Displacement Record at Bottom of the Dam (Left, Center, Right)

Figure 48: 20 Vertical Normal Stress Record at Bottom of the Dam (Left, Center, Right)

Figure 49: 21 Shear Stress Record at Bottom of the Dam (Left, Center, Right