Summary and Conclusions

Static Case

Slip Surface #	Factor of Safety	
	$\phi = 38^{\circ}$	$\phi = 42^{0}$
Slip Surface #1	1.37	1.61
Slip Surface #2	1.31	1.53
Slip Surface #3	3.29	3.87
Slip Surface #1 with assumed GW	1.37	1.61
Slip Surface #2 with assumed GW	1.31	1.53
Slip Surface #3 with assumed GW	2.69	3.15

Dynamic Case

Slip Surface #	Maximum pga for the slo having any deform	ope without ation
	$\phi = 38^{0}$	$\phi = 42^{0}$
Slip Surface #3 w/ GW	0.3g	0.4g

- New slope with a friction angle of 38 degrees which is safe against previous proposed slope (1:2) was analyzed, and analysis results did not satisfy design value of 1.5 factor of safety when the slope either is dry or include assumed ground water.
- The new slope (1:1.7) is statically safe as long as the friction angle of the soil is greater than 42 degrees. In other words, the new proposed slope of 1:1.7 <u>will not</u> have F.S greater than 1.5, assuming the friction angle less than 41.5 degrees.
- In terms of dynamic analysis, assuming friction angle of 38 degrees, new slope (1:1.7) can still tolerate the maximum seismic acceleration less than 0.3g.

Proposed New Slope: <u>1.7:1</u>

Proposed New Slope (1.7:1) – GeoSlope Analysis – Slip Surface #1 - \phi = 38^{\circ}

Proposed New Slope (1.7:1) – GeoSlope Analysis – Slip Surface #2

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #3

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #1 w/ GW

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #2 w/ GW

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #3 w/ GW

Proposed Slope – Seismic Analysis

Horizontal Acceleration vs. Factor of Safety

- Pseudo seismic analysis were performed by using different horizontal accelerations for slip surface #3.
- Horizontal acceleration of 0.3g was satisfied to F.S of 1.12.

Seismic Analysis – Slip Surface #3 w/ GW

Proposed New Slope: <u>1.7:1</u>

$$F.S = \frac{\tan \varphi}{\tan \alpha} \rightarrow F.S = 1.5 = \frac{\tan \varphi}{(\frac{1}{1.7})} \qquad \varphi =$$

$$arphi=41.\,5^0pprox42^0$$

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #1 - \phi = 41^{\circ}

Proposed Slope (1.7:1) – **GeoSlope Analysis** – **Slip Surface** #2 - $\phi = 41^{\circ}$

Proposed Slope (1.7:1) – **GeoSlope Analysis** – **Slip Surface** #3 - $\phi = 41^{\circ}$

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #1 w/ GW - $\phi = 41^{\circ}$

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #2 w/ GW - $\phi = 41^{\circ}$

Proposed Slope (1.7:1) – GeoSlope Analysis – Slip Surface #3 w/ GW - $\phi = 41^{\circ}$

Proposed Slope – Seismic Analysis - $\phi = 41^{\circ}$

Horizontal Acceleration vs. Factor of Safety

- Pseudo seismic analysis were performed by using different horizontal accelerations for slip surface #3.
- Horizontal acceleration of 0.4g was satisfied to F.S of 1.1.

Seismic Analysis – Slip Surface #3 w/ GW - $\phi = 41^{\circ}$

